波浪荷载作用下海床的动态响应

本章节采用一个简单案例让用户使用软件计算在波浪荷载作用下海床的动态响应。案例是一 个厚度 30m、长度 100m 的海床,模型如图 1-1 所示,相关参数列于表 1.1、1.2 中;本案例共设 置 Step 1、Step 2 两个时间步, Step 1 为计算初始状态阶段, Step 2 为波浪作用阶段。Step 1 时间 步是为了计算初始应力,为后续的分析提供一个良好的初始状态。因此土体采用弹性本构模型, 求解器选择 Static;在 Step 2 时间步中,为计算波浪作用下的海床动力响应,土体采用一般线性 弹性本构模型,求解器选择 Consolidation。

Wave	
Water Depth (m)	15
Wave Period (s)	7
Wave Height (m)	3

表 1.2 土体参数(采用简单的线弹性本构模型)

Seabed	
Young's Modulus (Pa)	6x10 ⁷
Poisson's Ratio	0.33
Void Ratio	0.68
Permeability (m/s)	1x10 ⁻⁵
Granular Density (kg/m3)	2700

1.1 FssiCAS 图形界面操作——前处理

1.1.1 新建工程文件

在 FssiCAS 软件中,用户点击 File—New,即可新建一个项目;用户点击 File—Save,选择 之前新建的文件夹(选择 Seabed 文件夹),即可将新建的项目保存在之前新建的文件夹里;当用 户点击右上角(退出软件)时,在弹出的窗口中选择 Yes,可保存当前项目,选择 No 即不保存 当前项目,如图 1-2 所示。

		Fsi F	SSI CA	S									
		🖺	Oper New	n 		Note	 There a	re unsave	ed items,	save or :	× not?		
			Save Save	e as			E	<u>Y</u> es	<u>N</u> o	Clo	se		
			6	名称 Breakwater Earthquake Pipeline Seabed			美型 文件夹 文件夹 文件夹 文件夹						
Fil	e Open								Fss	Note			×
ē# I≌	New Save			(m					S	ave o	or Not?	
	Save as			文件夹: Seabed			选择文件夹	取消		Yes		No	Close

图 1-2 在 FssiCAS 软件中新建和保存一个项目的过程图

注: 文件夹名字不能包含中文字, 软件的安装路径不能包含中文路径, 项目的保存路径不能包含 中文路径。

1.1.2 导入网格

网格文件利用 Gid 软件绘制,用户点击 FssiCAS—Preprocess—Load Mesh,在弹出的文件选择对话框中选择 Gid 输出的网格文件,双击或点击打开按钮载入网格文件,如图 1-3 所示。

在弹出的对话框中设置单元节点阶次,如图 1-4 所示。由于本案例中固体节点采用四边形 四节点单元, S.Node 默认为 4。海床包含流体作用,所以流体节点阶次设置为 1,点击 Ok 按钮确 认选择。

Model Results	^	名称	类型	修改日期	大小	
PreProcess		Seabed.gid	文件夹	2020/11/14 1		
E 🛱 LoadMesh		Seabed.GIDMESH	GIDMESH 文件	2020/6/4 15:43	232 KB	
- Gid - Abaqus - HyperMesh - Gmsh - Ansys - V LoadBackground - S Outer Boundary - Materials - Boundary Conditions - Boundary Conditions		Seabed.igs	IGS 文件	2020/6/4 15:44	2 KB	
HydroDynamics HydroDynamics Stokes Wave GFD AreoDynamics Fluctuating Wind FAST E-Earthquake	→ 文件名(I	N): Seabed.GIDMESH			~	All File 打카

图 1-3 导入 Gid 软件输出的网格文件

Load Mesh					? >
	S. Node	Ele. Type		F. Ord	er
M_1	4	Solid Element	▼	1	
					Ok

图 1-4 设置固体节点数和流体节点阶次

注: 这里通常规定从第三方网格画分软件导入的网格系统单元上的固体节点的阶次不能改变,由 软件自行判断固体节点的阶次。从 GID、Hypermesh Solidworks 等建模软件导出的网格中固 体节点为几阶,那么导入 FssiCAS 软件后固体节点还是原阶次,但可以指定流体单元的阶次, 但是流体单元的阶次不能大于同位置固体单元的阶次。

1.1.3 导入背景线

加载几何模型的背景线,是为了后续施加边界条件、区分材料以及设置输出时程结果的线。 在 Model 树状菜单栏中的 Load Background 中,用户点击 Outer Boundary,在弹出的 Outer Boundary 窗口中点击 Choose File,选择从 Gid 或 Solidworks 等建模软件中导出的背景线.igs 文件, 点击打开,关闭弹出的 Outer Boundary 窗口,可导入几何模型的背景线,如图 1-5 所示。

		😼 Choose Iges File		a thistopy	×
		← → ° ↑ <mark> </mark> « ∪yr	iam > 0003znangyugidmesntest	♥ 0 提案 0603	zhangyugidmesh D
		组织 ▼ 新建文件夹			📰 🕶 🔟 😯
		🛄 此电脑	名称	修改日期	类型
		🧊 3D 对象	Results	2021/6/3 22:19	文件夹
		📑 视频		2021/6/8 8:39	文件夹
Model Besults	×	▶ 图片	seabed.igs	2021/6/2 11:04	IGS 文件
PreProcess ⊖ ∰ LoadMesh Gid Abaqus ⊖ ♥ LoadBackground ↓ Souther Boundary		 ☆档 下號 音乐 夏面 本地磁盘 (C:) (D:) KINGSTON (E:) 新加楼 (H) 文件名 	< (N): seabed.igs	v Bound(*.	igs) v
				打开(0	り 取消

图 1-5 导入几何模型的背景线

- 注: 1.请导出背景线.igs 文件时仅保留点、线、面的信息, 删除相关体、注释等;
 - 2.内、外背景线一定要分开导入;

P

3.二维空间不考虑内背景线,三维空间里才考虑内背景线;

4.在三维情况下导出背景线.igs 文件时,请不要保留内边界的信息;

5.背景线.igs 文件的格式是属于 GID 软件自带的文件格式,是国际通用格式,属于开放性格式;

1.1.4 添加边界条件

需要将几何模型的边界条件设置为:海床左右两侧的边界设置为 X 方向位移固定,底部边界 设置为 X、Y 方向位移均固定,顶部边界设置孔压固定和添加水动力边界条件;

图 1-7 进入背景线选择模式

在工作区中拖动鼠标框选左右两侧的边界,用鼠标拖动选中后被选择的线出现高亮;

点击鼠标右键,在显示的边界条件下拉菜单中选择 Displacement—Add,在弹出的窗口中勾选 Constant Displacement 下面 XDof 并点击 OK,即可将左右两侧的边界设置为 X 方向位移固定,如 图 1-8 所示;

	Fis Boundary Apply ×
	BC Name: 左右x固定
	Constant Constant Displacement
	☑ X Dof 0
Displacement	□ Y Dof 0
• Pore Pressure	-Time Dependent
Force	○ Time History Displacement File
注 Flux)	☑ X Dof
Province and the second s	Load File
How Velocity	V Dof
€ UserDefined ►	
H Periodic Condition	ОК

图 1-8 将左右两侧的边界设置为 X 方向位移固定

按照上述方法,在工作区中拖动鼠标框选底部边界,用鼠标拖动选中后被选择的线出现高亮; 点击鼠标右键,在显示的边界条件下拉菜单中,选择 Displacement—Add,在弹出的窗口中勾 选 Constant Displacement 下面 XDof 和 YDof 并点击 OK,即可将底部边界设置为 X、Y 方向位移 均固定,如图 1-9 所示。

图 1-9 将底部边界设置为 X、Z 方向位移均固定

由于土体顶部受静水压力作用,因此这条边上的节点要施加水动力边界。

在工作区中拖动鼠标框选顶部边界,用鼠标拖动选中后被选择的线高亮;

点击鼠标右键,在显示的边界条件下拉菜单中,选择 Hydrodynamic—Add,即可将顶部边界 设置为孔压固定和添加水动力边界条件,如图 1-10 所示;

再次点击键盘'R'键,可结束选择;

点击操作界面右侧的伸缩区,勾选 Show Boundary Condition,可以检查是否添加边界条件。

图 1-10 将顶部边界设置为孔压固定和添加水动力边界条件

1.1.5 水动力边界条件设置

在前处理界面上 Model 树状菜单栏里的 Hydrodynamics 中,点击 Stokes Wave; 在弹出的窗口中输入波浪参数:一阶行波,波浪周期 1s,波高 0m(第一步只有静水压力, 不施加波浪力),水深 15m,水位线 15m+30m=45m,点击 OK,添加静水压力,如图 1-11 所示。

图 1-11 添加静水压力

注:水位线是指静态水面与 X 坐标轴 X=0 m 的距离。

1.1.6 设置材料参数

在前处理界面正上方的工具栏 2 中,点击设置材料属性和参数的功能按钮 Material,在工作 区中用鼠标左键点击海床模型,然后在弹出的窗口中选择线弹性本构模型,并输入海床属性参数, 点击 OK,即可设置材料属性和参数,如图 1-12、图 1-13 所示;海床的杨氏模量为 6e⁷,泊松比 0.33,孔隙比 0.68,渗透率 1e⁻⁵,其他设置不变。

	3 🗗 🕄 🚯	Step 1	The step step s	🕐 😂 🔹	
图 1-12 前处理界面正 Fai Material	上方的工具栏 2	中设置材料属性	和参数的功能 ×	能按钮 Mat	erial
Materia	l Name	Material 1	<u>^</u>		
Constitu	tive Model:	Elastic	V		
Succeed		No Succeed	V		
Initial S	tress Tensile	Yes	v		
Const	itutive Model Parameters:				
Young's	Modulus (Pa): 6e7				
Poisson	s Ratio : 0.33				
— Damp	mod Model Parameters:				
Dampr	od Model:	ELASTIC	V		
Young	's Modulus (Pa): 0				
Poisso	n's Ratio: 0				
Damp	ing Coefficient: 0				
Perme	ability Type: Constant	$\blacksquare K/K_0 = 1$			
Materi	al Parameters:				
Solid Pa	rticle Bulk Modulus (Pa): 1.0E+20	Saturation (0-1):	1		
Granula	r Density (kg/m ⁵): 2700	Fluid Density (kg/m ³):	1000		
Void Ra	tio: 0.68	Permeability x(m/s):	1e-5		
		Permeability y(m/s):	1e-5		
Param	eters under the Experimental Envir	onment:			
Gravity	(m/s²): 9.806				
			· · ·		

图 1-13 海床的相关属性参数

1.1.7 设置重力加速度场

点击 FssiCAS—Preprocess—Load—Filed Quantity—Uniform Field,为整个案例施加重力载荷。即加速度场的 X 方向为 0 m/s², Y 方向为 -9.806 m/s²,如图 1-14 所示。Step 2 的重力场在新建时间步时后自动复制当前时间步的设置,因此后续时间步不再重复施加加速度场。

图 1-14 重力加速度设置

1.1.8 设置求解器类型

在前处理界面上 Model 树状菜单栏里的 Solver 中,点击 Solver Type,在弹出的对话框中设置 求解器类型,求解器设置为 Static (Static 表示与时间无关的静态,为了获得初始状态最好用 static 求解器),并进行相关属性参数设置,如图 1-15 所示。

*** LoadMeah Mode® · Gid Abayus · HyperMesh Image: Solver Static U Drained V · Arays Image: Solver Static U Drained V · Materials Image: Solver Static U Drained V · Arays Image: Solver Static U Drained V · Arays Image: Solver Static U Drained V · Arays Image: Solver Solver Solver Solver Solver Solver Solver V · Arays Image: Solver Solver Solver Solver Solver V · Arays Solver Solver Solver Solver Solver V · Image: Solver Solver Tiel Image: Solver Solver Solver V · Solver Solver Solver Tiel Image: Solver Solver Solver Solver V · Solver Solver Solver Solver Solver Solver Solve	reProcess					
Gid Image: Second	∃∰ LoadMesh	Mode				
Abaguas HyperMesh Grindh Anays Arays Image: Solver Static U Datained Image: Solver Static U Datained Image: Solver Static U Datained Solver Static U Datained Image: Solver Static U Datained Image: Solver Static U Datained Image: Solver Static U Datained Solver Static U Datained Image: Solver Static U Datained Solver Static U Datained Image: Solver Static U Datained Solver Static U Datained Image: Solver Static U Datained Solver Static U Datained Image: Solver Static U Datained Solver Static U Datained Image: Solver Static U Datained Image: Solver Static U Datained Image: Solver Static U Datained Solver U Datained Image: Solver Static U Datained Solver U Datained Image: Solver Solver Type Image: Solver Type Direct Sparse Solver Type Direct Sparse Solver Type Direct Sparse Solver Type Image: Solver Static Image: Solver Solver Type Image: Solver Type Direct Sparse Solver Type Image: Solver Type Image: Solver Solver Type Image: Solver Type Image: Solver Solver Type Image: Solver Type Image: Solver Type	Gid	(Hodog				
HyperMesh Image of the second se	Abaqus					
Grash Anys Anys Solver Setup Anys Solver Setup W LoadBackground Image: Solver Setup Material S Image: Solver Setup Boundary Conditions Image: Solver Setup - Relay(Bits) Image: Solver Setup - Relay(Bits) Image: Solver Setup - Relay(Bits) Image: Solver Setup - Solver Static Image: Solver Setup - Relay(Bits) Image: Solver Setup - Solver Static Image: Solver Setup - Relay(Bits) Image: Solver Setup - Stop Solver Namics Image: Solver Setup - No Fathquake Image: Solver Namics - No Eathquake Library Image: Solver Type - Solver Setup Image: Solver Type - Solver Setup Image: Solver Type - Solver Setup Image: Solver Type - No Acceleration Field Image: Solver Type - Uniform Acceleration Field Image: Solver Namics - Solver Setup	HyperMesh					-
→ Anays ✓ ✓ LoadBackground ✓✓ ✓ Materials ✓✓ → Material ✓✓ → Boundary Conditions ✓✓ → Ærkalling ✓✓ → Restantial 1 ✓✓ → Boundary Conditions ✓✓ → Ærkalling ✓✓ → Restantial 1 ✓✓ → Boundary Conditions ✓✓ → Arkhyjöting ✓✓ → Notosia ✓✓ → HydroDynamics ✓✓ → Property Updation Non-Updated ♥ → Arkhyjöting ✓✓ → No Hydro → → Stokes Wave ✓ → Colo ✓ → Arkolyjöting ✓✓ → No Hydro → → Arabyjöting ✓ → Arabyjöting ✓ → Arabyjöting ✓ → Arabyjöting ✓ → Property Updation Non-Updated ♥ → Property Updation Non-Updated ♥ → Fortaniang Wind + → Fortaniang Wind + → Fortaniake	Gmsh		Solver Setup		\times	
a O LoadBackground Image: Conditions b Materials Image: Conditions b Atterial 1 Image: Conditions b Atterial 1 Image: Conditions b Atterial 1 Image: Conditions b Atterial 3 Image: Conditions b Atterial 3 Image: Conditions b Atterial 5 Image: Conditions b Atterial 5 Image: Conditions b Atterial 5 Image: Conditions b HydroDynamics Image: Conditions b HydroDynamics Image: Conditions c CDD Restart File Written c AcoDynamics Image: Conditions c Filtcuating Wind Feathquake c Factor No Earthquake c Standard Image: Conditions c Solver Yes c Solver Yes c Solver Yes c Solver Yes c Conditions Image: Conditions c Solver Yes c Solver	Ansys					
→ Auterial 3 → Material 3 → Boundary Conditions → ± Ar Efiz → #Shy@Biz → #Shy@Biz → #Shy@Biz → #Shy@Biz → HydroDynamics → S No Hydro → Recturing Wind → Fact Janga → Poperty Updation Non-Updated → Rotaring Wind → Fact Janga → No Earthquake → No Earthquake → No Earthquake → No Earthquake → Notional Standard → National Standard → Uniform Acceleration Field → Uniform Acceleration Field → Uniform Acceleration Field → Uniform Acceleration Field → Source Source	V LoadBackground		Solver St	tatic 🔻 Drained	▼	
Haterials Material	🏎 🗞 Outer Boundary		P			
	- Materials		Parameters			
Boundary Conditions Charthouse Academic State Academ	Material 1		Rotation	Non-Rotation		
A challer	- Boundary Conditions		Stiffness Matrix Symmetry	No		
Araby Bib: ★abi Abgress Book	左右X回正 京朝 ₂₀ 国家					
HydroDynamics HydroDynamics HydroDynamics HydroDynamics Field Cystem Strain HydroDynamics FAST Earthquake HydroDynamics FastT Earthquake No Earthquake No Earthquake Sinusoidal Function Earthquake Library No Kardenator Field Uniform Acceleration Field Centrifugal Acceleration Field Centrifugal Acceleration Field Solver	成市以回た	$W_{\rm NT} = E_{\rm NT}$	Iterative Convergence Criteria	2		
 HydroDynamics HydroDynamics CrD AreoDynamics Fluctuating Wind FAST Earthquake Solidal Function Earthquake Sitenal Standard User Solver (LU) Parallel Method CPU OpenMP CPU Parallel Threads Solver Step Step Step Step 			Maximum Subdivision Number	100		
Property Updation Non-Updated V AreoDynamics - AreoDynamics - Fluctuating Wind - FAST 0 Earthquake - No Earthquake - National Standard - UserDefined - Stoler - We find - CPU Parallel Threads - Solver - Stop 1 - Step 1 - Step 2 - Step 1 - Step 2	+ HydroDynamics					
Analysis Type 2D-Plane Strain V CFD ArecoDynamics -Fluctuating Wind -FAST E Earthquake - No Earthquake Library - National Standard - UserDefined B Field Quantity - No Acceleration Field - Centrifugal Acceleration Field - Solver - Stop Step - Stop Step Stop Step - Stop Step Stop Stop Stop	≈ No Hvdro		Property Updation	Non-Updated		
CFD AreoDynamics	Stokes Wave		Analysis Type	2D-Plane Strain	▼	
AreoDynamics Fluctuating Wind FAST Earthquake Sinsoidal Function Earthquake Sinsoidal Function Earthquake Library NBFGS 1 Ves NBFGS 1 Ves NBFGS 1 Ves Sparse Solver (LU) Parallel Method CPU OpenMP CPU Parallel Threads 4 Ok Solver	🔁 CFD		Restart File Written	Vec	-	
Fluctuating Wind FAST Earthquake No Earthquake Sinusoidal Function Earthquake Sinusoidal Function Earthquake Earthquak	AreoDynamics		Restarcine written			
FAST Earthquake No Earthquake Solver Type Direct Sparse Solver (LU) Parallel Method CPU OpenMP CPU OpenMP CPU Parallel Threads Solver Solve	 Fluctuating Wind 		Deformation to 0 in Restart File	Yes		
Betrifuguake No Earthquake Sinusoidal Function NBFGS Earthquake Library NBFGS National Standard Sparse Solver Type UserDefined Parallel Method B Field Quantity CPU OpenMP No Cartifugal Acceleration Field Ok Solver Ok Solver V Step 1 Z	FAST		Displacement Succeed	Ves		
NBF6S 1 Sinusoidal Function Earthquake Library National Standard UserDefined Field Quantity No Acceleration Field Centrifugal Acceleration Field Centr	Earthquake		bisplacement bacced			
Sinusoidal Function - Earthquake Library - National Standard - UserDefined = Field Quantity - No Acceleration Field - Uniform Acceleration Field - Centrifugal Acceleration Field - Centrifugal Acceleration Field - Solver Solver - Solver - Solver	No Earthquake		NBFGS	1		
National Standard UserDefined Solver Solver Solver Solver Step 1 Sub_Step 1 Step 2 Step 2 Step 1 Sub_Step 1 Step 2	Sinusoidal Function		Sparse Solver Type	Direct Sparse Solver (LU)		
Parallel Method CPU OpenMP UserDefined ⇒ Field Quantity → No Acceleration Field Centrifugal Acceleration Field Centrifugal Acceleration Field Solver ⇒ Solver ⇒ Step 1 ↓ Sub Step 1	- National Standard				\equiv	
 Field Quantity No Acceleration Field Uniform Acceleration Field Centrifugal Acceleration Field Solver Step Step 1 Step 1 Step 2 	UserDefined		Parallel Method	CPU OpenMP		
No Acceleration Field Uniform Acceleration Field Centrifugal Acceleration Field Solver Step 1 Sub_Step 1 Sub_Step 1 Sub_Step 1 Sub_Step 1 Sub_Step 1	Field Quantity		CPU Parallel Threads	4		
Uniform Acceleration Field Centrifugal Acceleration Field Solver Solver Step 1 Sub_Step 1 Sub_Step 1 Sub_Step 1 Sub_Step 1 Z X	No Acceleration Field			1		
Centrifugal Acceleration Field Centrifugal Acceleration Field Solver Solver Solver Step 1 Sub_Step 1 Sub_Step 1 Z Z	Uniform Acceleration Field					
 Solver Time Step Step 1 Sub_Step 1 Sub_Step 1 	Centrifugal Acceleration Field			0	К	
	- 🔍 Solver					
Step 1 Sub_Step 1 Z Z	🗄 🕒 Time Step					
L Sub_Step 1	🖻 Step 1	+ ^r				
E-Step 2	Sub_Step 1	2	X			
	⊡ Step 2					
Sub_Step 1	Sub_Step 1					

图 1-15 设置求解器的相关属性参数

1.1.9 设置时间步

通过点击 Time step 中 step 1 下面 Sub_step 1 设置时间步,具体设置参数如图 1-16 所示。 Simulation Time (s)为计算总时间,设置为 1 s; Interval for Time Steps (s)为时间步长,设置为 0.1 s; Interval for Updating Coordinate (s)为坐标更新时间,设置为 1.1 s (大于计算总时间,意为 不更新坐标); Interval for Updating Global Stiffness Matrix (s)为刚度矩阵更新时间,设置为 1.1 s (不 更新刚度矩阵); Maximum Iterations 为每个时间步最大迭代次数,设置为 10 步; Restart File Output Interval (s)为输出重启文件的时间,设置为 1.1 s (不生成重启文件); Restart File Output Interval (s)为输出基一时刻所有节点/高斯点上的位移、应力、应变等结果文件的时间间隔,设置为每 0.1 s 输出一次结果文件; Results Output 为选择输出节点上的结果; History Output Interval (s)为输出特定的节点或单元上的应力、应变等结果文件的时间间隔,设置为每 0.1 s 输出一次 0.1 s (意为不输出)。α, β1, β2 为时间系数,保持默认值即可。可在 Results Sequence 中选择输出流速、流线图,每一步均需要选择。

– Parameter – – – – – – – – – – – – – – – – – – –			
Simulation Time (s)	1	Physical Quantity	Value
Start Time of Current Step (s)	0	Coordinate	
Interval for Time Steps (s)	0.1	Displacement	
Interval for Updating Coordinate (s)	1.1	Dara Drassura	
Interval for Updating Global Stiffness Matrix (s)	1.1	Fore Fressure	
Maximum Iterations	10	Seepage Velocity	\checkmark
Restart File Output Interval (s)	1.1	Seepage Force	\checkmark
Results File Output Interval (s)	0.1	Stress	\checkmark
Results Output	On Nodes 🔻	Strain	\checkmark
State Variables Output	No	Void Ratio	
Results Sequence	Manage	Acceleration	
Results Format	Binary 🔻	Bending Moment	
History Output Interval (s)	0.1	Rotation Angle	
α	0.6	Toran anatom	
β1	0.605	Temperature	
β2	0.6	Saturation	

图 1-16 设置时间步和相关属性参数

注: 1.更新坐标的数值大于总时间数值表示不更新,反之表示更新;

2.更新刚度矩阵的数值大于总时间数值表示不更新,反之表示更新;

3.输出重启文件的数值大于总时间数值表示不输出,反之表示输出,但是无论如何,程序结束时都会输出一次;

4.必须满足条件: $\alpha \ge 0.5$ 、 $\beta_1 \ge \beta_2 \ge 0.5$;

1.1.10 设置初始条件

在前处理界面上 Model 树状菜单栏中,点击 Initial State,点击 OK,即可完成 Step 1 初始状态设置,如图 1-17 所示。

Model Results	Soil-Structures	PostProcess	
Abaqus HyperMesh HyperMesh Gmsh Ansys Outer Boundary Materials HyperMesh Material HyperMesh Materials HyperMesh Materials HyperMesh Material HyperMesh Materials <	Fs	Si Si	Fyi Initial State X Solver: Static Type: Generate Initial File Set initial state to Zero Yes Ok

图 1-17 设置初始状态和指定初始条件

1.1.11 时间步 Step 2 设置

本案例设置 Step 1、Step 2 两个时间步, Step 1 用于给后续计算提供一个良好的初始状态, Step 2 为正式加载计算时间步。点击 Step 按键可增加时间步,添加成功后左端任务栏会显示添 👻 Step Step 1 加的时间步,点击^{Post Step 2} 此按键可以对需要设置的时间步进行设置,如图 1-18 所示。 Step 1 Step Step Step FSSI_GUI ? \times 🗄 🕒 Time Step 🗄 Step 1 Time Step: Step -Sub_Step 1 Ė-Step 2 Ok -Sub_Step 1 图 1-18 增加时间步的步骤示意图

如果先设置 Step 1 的边界条件和前处理的各项参数再添加新的时间步,新的时间步会自动复制 Step 1 的所有设置;如果先添加新的时间步再设置 Step 1,每个时间步都需要重新设置对应的 边界条件和参数。为了提高操作效率,一般情况下先将 Step 1 的所有参数都设置完整再创建新的

Step 2
 Step 2
 Step 1
 Step 2

时间步,本案例 Step 2 的相关参数设置如下。

1.1.12 水动力边界条件设置

Step 1 只为计算模型初始状态,不施加波浪力, Step 2 添加波浪周期、高度。

在前处理界面上 Model 树状菜单栏中的 Hydrodynamics 中, 点击 Stokes Wave;

在弹出的窗口中输入波浪参数,如图 1-19 所示:波浪类型选择一阶波浪,波浪周期为 7s,波高为 3m,水深为 15m,水位线为 15+30=45m,点击 OK;

SS Coupled Way	×
Stokes	
Wave Type:	1st Wave
Wave Period (s) :	7
Wave Height (m) :	3
Water Depth (m) :	15
SWL Position (m) :	45
	ОК

图 1-19 施加波浪荷载

注:水位线是指静态水面与 X 坐标轴 X=0 m 的距离。

1.1.13 设置材料参数

Step 2 材料参数和 step 1 相同,具体参数设置参考图 1-13。

1.1.14 设置求解器类型

在前处理界面上的 Model 树状菜单栏中的 Solver 中,点击 Solver Type,在弹出的对话框中设置求解器类型,求解器设置为 Consolidation(Consolidation 表示土的固结分析,与时间一阶导数相关),并进行相关属性参数设置(对称),如图 1-20 所示。

Solver	Consolidation v	Drained
— Parameters —		
Rotation	Nor	-Rotation
Stiffness Matrix Symmetr	y Au	utomatic 🔍
Iterative Convergence Cri	teria 2	
Maximum Subdivision No	umber 100	
Property Updation	L	pdated 🔻
Analysis Type	2D-F	lane Strain
Restart File Written		Yes 🔻
Deformation to 0 in Rest	art File	Yes
Displacement Succeed		Yes
NBFGS		1 🔍
Sparse Solver Type	Direct Sp	arse Solver (LU)
Parallel Method	CPL	J OpenMP
CPU Parallel Threads	4	

图 1-20 求解器的相关属性参数设置

1.1.15 设置时间步

Step 2 的时间步设置如图 1-21 所示。计算总时间设置为 70 s;时间步长设置为 0.1 s;坐标更 新时间设置为 71.1 s;刚度矩阵更新时间设置为 71.1 s;每个时间步最大迭代次数设置为 10 步; 重启文件的时间设置为 71.1 s;每 0.1 s 输出一次结果文件;输出节点上的结果;每 0.1 s 输出一次 选定节点或单元的时程文件。α, β1,β2 保持默认值。

Abaqus						
HyperMesh	Mode					
Gmsh		•				1
Ansys		😢 😼 Time	Step	?	×	
V LoadBackground		Si on o			_	
So Outer Boundary		Sub Ste	ep 1			
Material 1		-Par	ameter			
- Boundary Conditions		Simu	lation Time (s)	70		
左右x方向固定	$+\mathbb{Y}_{\mathbb{Z}}$ - $\mathbb{Y}_{\mathbb{Z}}$	Court I	Time of Comment Store (a)	0	-	
底部xv固定		Start	Time of Current Step (s)	0		
BC-3	Ecwo	Interv	al for Time Steps (s)	0.1		
Loads	-2-2	Inter	al for Updating Coordinate (s)	71.1		
HydroDynamics	W. IE.		an of opening coordinate (s)		=1	
No Hydro		Interv	al for Updating Global Stiffness Matrix (s)	71.1		
Stokes Wave		Maxi	mum Iterations	10		
AreoDynamics		Resta	rt File Output Interval (s)	71.1		
Fluctuating Wind					=	
FAST		Resul	ts File Output Interval (s)	0.1		
🖻 Earthquake		Resul	ts Output	On Nodes	▼	
- No Eartnquake - Sinusoidal Function		State	Variables Output	No	V	
Earthquake Library		Popul	ts Sequence	Manage	-	
- National Standard		Resul	is sequence	Wallage		
UserDefined		Resul	ts Format	Binary	V	
Field Quantity No Assolutation Field		Histo	ry Output Interval (s)	0.1		
- Uniform Acceleration Field					=	
Centrifugal Acceleration Field		α		0.6		
- 🔍 Solver		β1		0.605		
🕒 Time Step		82		0.6		
Step 1		pe -		010	_	
Sub_Step 1						
Step 2		.y.		Create Del	ete	
Sub_Step 1						4
- on Initial State		Z X				
- mildi State						
	图 1_21 设	" 出 印 出	和相关届性参数			
	国 1-21 以	且时时少	伸伸八肉口穸奴			

注: 1.更新坐标的数值大于总时间数值表示不更新,反之表示更新;

2.更新刚度矩阵的数值大于总时间数值表示不更新,反之表示更新;

3.输出重启文件的数值大于总时间数值表示不输出,反之表示输出,但是无论如何,程序结 束时都会输出一次;

4.必须满足条件: $\alpha \ge 0.5$ 、 $\beta_1 \ge \beta_2 \ge 0.5$;

1.1.16 设置初始条件

在前处理界面上 Model 树状菜单栏中,点击 Initial State,然后点击 Load File,点击 OK,并 在弹出的 Question 窗口中选择 Yes,完成指定初始条件,如图 1-22 所示;

图 1-22 设置初始条件

1.1.17 计算并保存

点击在前处理界面上 Model 树状菜单栏里 Computaton 中的 FSSI-W,或者在前处理界面正上 方的工具栏 2 中的 WriteCalculate 功能按钮,点击 All step,保存当前项目,开始计算,如图 1-23 所示;

计算完成后结果储存在 Project\Results\Soil_Model\Multiple。 在退出 EssiCAS 软件时, 田户在弹出的 Note 窗口中占击 Ves, 即可退出软件时保存项目

	/11/	ТУЛЦТ	1039	

17 😳 🗞	₽? ₽?	E	Step 1	🔻 🗺 🎨 🕸 Excavation	4

onitor			- 0	
Solver	Screen	TimeHistory		
lotal / Average	e Number Of Iterat	ns: 1 5.2631579E-02		
RunTime :	0.190 Iterations:	0 Kstep : 19 (Converged)		
SSI-CAS-2D_	Soil Model For Win	ows OS		
ssiCAS	Licensed To Acader	c User By Prof. Jianhong Ye At WHRSM_CAS		
SolverType :	Static Date :	0220108 Time : 17:02:18		
itepTime :	0.200 DeltaTime	0.010 Max_Iteration: 10		
RestartTime:	1.000 Toler :	0.010 Ncrit : 1		
Minimum Nur	nber Of Iterations	: 0		
Maximum Nur	mber Of Iterations	: 1		
Number Of No	on-Convergence Ti	e Steps: 0		
fotal / Averag	e Number Of Iterat	ns: 1 5.000001E-02		
RunTime :	0.200 Iterations:	0 Kstep : 20 (Converged)		
Solution proce	ess at this step is co	npleted at: 17:02:18		
Begin To Save	Final File			
	0			
Jispiacement	Order: 0			

图 1-23 计算和保存

注: FSSI-NW 表示启动计算程序时不修改输入文件。 FSSI-W 表示启动计算程序时修改输入文件。

1.2 FssiCAS 图形界面操作——后处理

用户点击树状菜单栏上的 Results,即可进入后处理界面。

1.2.1 加载文件

点击在后处理界面上 Results 树状菜单栏中的 Open Results File,在弹出的窗口中点击 Soil ResultsFiles Director—Load Files,选择需要处理的结果文件夹 Results—Soil_Model—Multiple,即可进入后处理阶段,如图 1-24 所示。

图 1-24 选择需要处理的结果文件夹的过程

1.2.2 绘制分布图

点击 FssiCAS—Postprocess—Distribution—Solid & Structures—Pore Pressure,可以查看孔隙压力分布图。如图 1-26 所示。点击此菜单,可查看动态孔隙压力变化。 Dynamic Pore Pressure V

图 1-26 孔压分布图

点击 FssiCAS—Postprocess—Distribution—Solid & Structures—SeepageVelocity,可以绘制渗流 分布图。可以通过选择工具栏,可以绘制渗流速度矢量图和渗流速度流线图。如图 1-27 所示。可 点击伸缩区中 Scale Factor 调节流速、流线显示的状态,如图 1-28 所示。

图 1-27 流速、流线图

Monitoring Point	~			
Solid Model	~		Solid Mesh	
Deformed Solid Mesh	1			
Solid Vector	/			
Solid Streamlines				
Solid Feature Edges				
Wave Model			Wave Mesh	
STL Model				
Wave Vector				
Wave Streamlines				
Remove Air Doma	in			
Threshold of VOF:			0.5	
✓ Scale Factor				
Deformation Scale F	actor	1		
Glyph Scale Factor		5		
Number of Arrows		100	00	
			Ар	oly
团 1 70 田 甘	运油		海昌日	三中大

图 1-28 调节流速、流量显示状态

1.2.3 录制动态视频

第一步点击保存按钮,第二步点击 play 按钮,位移、孔压等图片会随着时间步的增加保存到 结果文件 ExportFiles 中,如图 1-29 所示。可通过 matlab、ps、pr 等软件将图片制作成视频。

